Taehwan Kim

Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94720

+1-510-295-3549 | taehwan@berkeley.edu

Research Interests	Electronic-photonic integrated systems for communication/sensing Novel signal processing techniques for sensor systems
EDUCATION	University of California, Berkeley Aug. 2014 to Aug. 2019 (Anticipated) Ph.D. Student in Electrical Engineering and Computer Sciences
	Seoul National University Mar. 2007 to Feb. 2014 B.S. in Electrical and Computer Engineering B.A. in Economics (Double Major)
Research Experience	Graduate Technical InternMay. 2017 to Aug. 2018PHY Research Lab, Intel Labs, Santa Clara, CA
	 Polarization de-multiplexing schemes for intensity-modulated direct-detection (IM-DD) optical communication
	- US patent published
	Graduate Student Researcher Aug. 2014 to present Integrated Systems Group, University of California, Berkeley (Advisor: Vladimir Stojanović)
	 Solid-state free-space coherent optical systems in electronic-photonic integration platform
	Project goal: realization of an single-chip solution for coherent LiDAR and free-space optical communication links leveraging wafer-scale 3D silicon photonics/CMOS integration technology
	- System and circuit-level solutions for scalable beam-steering system based on optical phased array/focal plane array
	- System-level trade-off analysis for realistic LIDAR/communication applications
	- Constructed experimental setup for beam characterization and free-space system demonstration
	- Experimental demonstration of single-chip optical phased array system for solid-state beam- steering, paper presented at the ISSCC
	- First experimental demonstration of fully-integrated coherent LiDAR system, paper accepted to Symposium on VLSI
	• Circuit/system-level techniques for laser phase noise management
	Project goal: low-power, low-complexity solutions for enhancing laser linewidth-limited perfor- mance in coherent communications/LIDAR systems
	- Performed system-level analysis about the impact of laser phase noise in coherent LiDARs/free- space communication links
	 Developed active control systems for laser phase control leveraging tight integration of photonics and electronics
	- Optical PLL for chirp linearization and coherence distance enhancement for FMCW LIDAR: chip tape-out done in 2017 in 45nm SOI, currently under testing
	• Signal processing techniques for sensing systems
	Project goal: exploring new algorithms for various sensors that can enhance the performance or extract overlooked information by leveraging known signal models
	- Developed optimal detection algorithm for long-range FMCW LiDAR operating in the range beyond the coherence distance by exploiting known laser spectral characteristics: experimentally demonstrated, paper published at ICASSP & CLEO
	- Developed neural network-based framework for multi-dimensional super-resolution single-mole- cule localization fluorescent microscopy, experimentally demonstrated & paper submitted
	• Model Predictive Control algorithm (MPC) based equalization of high-speed links
	Project goal: demonstration of transmitter-side equalization scheme based on channel models for flexible, energy-efficient equalization of asymmetric high-speed interfaces (e.g. processor-memory, switches)

- Built/measured chips in 28nm FDSOI & 45nm SOI, paper published at ASSCC

Undergraduate Researcher

Mixed-Signal IC and System Group, Seoul National University (Advisor: Jaeha Kim)

- Formal verification of analog/mixed-signal circuits
 - Developed an algorithm to verify correctness of start-up behavior of ring oscillators in presence of variability

Jun. 2012 to Feb. 2014

- Implemented GCHECK: a Python-based tool for detection of start-up failures of coupled ring oscillators (transferred to Samsung Electronics, patent issued), paper published at ICCAD
- Variability-aware circuit optimization
 - Developed global optimizer for analog/mixed-signal circuits based on statistical metamodeling
- PUBLICATIONS **T. Kim***, S. Moon*, K. Xu, "Information-Rich Localization Microscopy through Machine Learning," *Nature Communications*, 2019. (*co-first authors)

P. Bhargava*, T. Kim*, C. V. Poulton*, J. Notaros, A. Yaacobi, E. Timurdogan, C. Baiocco, N. Fahrenkopf, S. Kruger, T. Ngai, Y. Timalsina, M. R. Watts, V. Stojanović, "Fully Integrated Coherent LiDAR in 3D-Integrated Silicon Photonics/65nm CMOS," *IEEE Symposium on VLSI Circuits*, to appear. (*co-first authors)

T. Kim, P. Bhargava, C. V. Poulton, J. Notaros, A. Yaacobi, E. Timurdogan, C. Baiocco, N. Fahrenkopf, S. Kruger, T. Ngai, Y. Timalsina, M. R. Watts, V. Stojanović, "A Single-Chip Optical Phased Array in a 3D-Integrated Silicon Photonics/65nm CMOS Technology," *IEEE International Solid-State Circuits Conference (ISSCC)*, 2019.

T. Kim, P. Bhargava, V. Stojanović, "Overcoming the Coherence Distance Barrier in Long-Range FMCW LIDAR," *Conference on Lasers and Electro-Optics (CLEO)*, 2018.

T. Kim, P. Bhargava, V. Stojanović, "Optimal Spectral Estimation and System Trade-Off in Long-Distance Frequency-Modulated Continuous-Wave LIDAR," *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 2018.

T. Kim, P. Bhargava, V. Stojanović, "A Model Predictive Control Equalization Transmitter for Asymmetric Interfaces in 28nm FDSOI, *IEEE Asian Solid-State Circuits Conference (ASSCC)*, 2016.

T. Kim, D.-G. Song, S. Youn, J. Park, H. Park, and J. Kim, "Verifying Start-Up Failures in Coupled Ring Oscillators in Presence of Variability Using Predictive Global Optimization," *IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, 2013.

J. Kim, J. Lee, D.-G. Song, **T. Kim**, K.-H. Kim, S. Jung, and S. Youn, "Discretization and Discrimination Methods for Design, Verification, and Testing of Analog/Mixed Signal Circuits," *Custom Integrated Circuits Conference (CICC)*, 2013.

PATENTS	T. Kim, G. Balamurugan, H. Li, H. Jayatilleka, "Polarization De-Multiplexing for Intensity-Modulated
	Direct-Detection (IM-DD) Optical Communications," US Patent (Publication Number: 20190033630)

COURSEWORK Analog Integrated Circuits, Advanced Analog Integrated Circuits, Introduction to Digital Integrated Circuits, Integrated Circuits for Communications, Digital Signal Processing, Introduction to Optical Engineering

TEACHING	Introduction to Digital Design and Integrated Circuits (EECS151/251A) Designing Information Devices and Systems I (EE16A)	Spring 2018 Spring 2019
Honors & Awards	Kwanjeong Scholarship for Abroad Studies National Scholarship for Science and Engineering, Korea Science Foundation	2014-2019 2007-2013
Skills	Languages: C, C++, Python, Verilog, Verilog-AMS, MATLAB	

Tools: Custom IP block designand VLSI design/verification tools
(Virtuoso, ADS, DC, ICC, RC, SOC-ENC, Calibre)